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i. Introduction 

A weakly ionized plasma inelectric and magnetic fields, in which the electron energy 
distribution is nonequilibrium , is considered in the present article. Such a plasma is en- 
countered in the ionosphere [I], MHD generators [2], and semiconductor devices. A nonequilib- 
rium gas-discharge plasma incrossed electric and magnetic fields has recently evoked in- 
creased interest in connection with a number of technical applications [3, 4]. 

The phenomenon of anisotropy of electron diffusion in gases under the action of an elec- 
tric field, which has found a theoretical explanation in [6, 7], was discovered experimentally 
in [5]. In [8] it was shown that the system of equations of electron transport in a weakly 
ionized, weakly nonuniform plasma in an electric field is reduced to one modified equation 
of continuity, which was obtained in the final form (without a magnetic field) in [9]. This 
is connected with the fact that the average velocity and the average energy of the electrons 
are uniquely determined by the external electric field and the cross sections of electron 
scattering on atoms and molecules. According to [9], not only nonuniformity of the electron 
density but also nonuniformity and nonsteadiness of the parameter E/N(E is the electric field 
strength and N is the density of neutral particles) result in a renormalization of the electron 
flux along the electric field, i.e., the electron "thermodiffusion" in the electric field is 
also anisotropic. A large number of articles [7, 9] have been devoted to the calculation of 
electron transport coefficients in an electric field (without a magnetic field). 

A modified equation of electron transport in a weakly ionized plasma in electric and 
magnetic fields was derived in [i0], equations were given for determining the electron trans- 
port coefficients, and the stability of a weakly ionized plasma was investigated on the basis 
of the new transport equation. 

In the present article we consider the limit of a weak magnetic field, when the electron 
cyclotron frequency is large compared with the frequency of electron momentum transfer. Ex- 
plicit expressions are obtained for the electron transport coefficients in the model case when 
the collision integral has a divergent form while the cross sections of electron scattering on 
neutral particles are power-law functions of the electron velocity. A collision integral of 
this kind occurs if the main losses of electron energy are connected with elastic collisions 
(atomic gases). In molecular gases the collision integral is reduced to the same form under 
certain conditions with the excitation of rotations and vibrations. Only the transverse 
diffusion coefficient was calculated earlier [7] from a set of electron transport coefficients 
for a strong magnetic field. 

2. Fundamental Equations 

We obtain the equations for determining the electron transport coefficients in a non- 
equilibrium weakly ionized plasma in electric and magnetic fields following [i0]. 

If the electrons acquire an energy considerably higher than the thermal energy (eEl >> T, 
U 

where % is the relaxation length of the average electron energy, e is the electron charge, 
u 

and T is the gas temperature) over a length % under the action of the electric field, then 
U 

the average electron energy considerably exceeds the energy of the heavy particles [ii]. For 
a sufficiently low degree of ionization ~o (~~ ~ 10-6-10 -4 for various gases) the electron 

i 1 

mean free path with respect to electron-electron scattering exceeds %u' and the electron 
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energy distribution becomes non-Maxwellian [ii]. For the electron velocity distribution func- 
tion we use the two-term approximation [ii] f = fo + (v/v)f~ (v is the electron velocity), 
which is valid,for the majority of gases. If the frequency of variation of the plasmaparam- 
eters is much less than the frequency v of momentum transfer from electrons to neutral par- 
ticles, then the system of equations for the isotropio and anisotropic parts of the electron 
velocity distribution function in electric and magnetic fields E and H has the form [8, 12] 

0 (n/o)ot ~_ ~v div (nf~) 3my 2enE ~TviV2!l) - -  So (n]o) = O~ 

v eE 0)'o q..! - 
TV (nf0). 7~7-- o• ~a v f ,  = O, 

( 2 . i )  

where ~ = Notv; ot is the transport cross section of electron scattering on neutral particles; 

n is the electron density; ~ = eH/mc; So is the collision integral averaged over angles. 

The electron distribution function is normalized by the condition 

i �9 4 ~  ] o v 2 d v = l ,  
0 

I f  t h e  c h a r a c t e r i s t i c  s i z e  L o f  t h e  n o n u n i f o r m i t y  and t h e  t i m e  s c a l e  z o f  v a r •  o f  t h e  
e l e c t r o n  e n e r g y  d i s t r i b u t i o n  s a t i s f y  t h e  c o n d i t i o n s  ~ << L and z -1 << v (v i s  t h e  f r e q u e n c y  

U U U 

of  e n e r g y  t r a n s f e r  f rom e l e c t r o n s  to  n e u t r a l  p a r t i c l e s ) ,  t h e n  t h e  e l e c t r o n  d i s t r i b u t i o n  f u n c -  
t i o n  i n  t h e  p r i m a r y  o r d e r  foo  i s  d e t e r m i n e d  by  t h e  s o l u t i o n  o f  t h e  s y s t e m  ( 2 . l )  w i t h o u t  t h e  
t e r m s  d e s c r i b i n g  t h e  n o n u n i f o r m i t y  and n o n s t e a d i n e s s :  

e2 o r ~  v~ Ofoo k ~ ] }  (2.2"~ ~ 3 ~ ~ - -  ~vE ~ + + So (/oo) = O .  

This function can be used as the zeroth approximation in the construction of a theory of dis- 
turbances in the parameters (TVu)-1 and % /L. u 

We shall assume that the electron density and the electric field are nonuniform and non- 
steady. Then, according to [i0], the electron distribution function can be represented in the 
form 

lo,(V) Ioo.( ) E ox--f + + (2.3) 

- "~ Ot 

where  Eli o(oE)/m ~- and E •  = E _  Eli. (Here  and l a t t e r  summat ion  o v e r  t h e  r e c u r r e n t  i n d i c e s  

i s  u n d e r s t o o d . )  E q u a t i o n s  f o r  t h e  c o e f f i c i e n t s  i n  t h e  e x p a n s i o n  ( 2 . 3 )  a r e  p r e s e n t e d  i n  [10]o 
A c c o r d i n g  t o  [ 1 0 ] ,  t h e  e x p r e s s i o n  f o r  t h e  a v e r a g e  d i r e c t i o n a l  v e l o c i t y  o f  t h e  e l e c t r o n s  h a s  
t h e  fo rm 

�9 D,~ c)Ez" I D~ OE• D! [, OE D t-~ OEi  D r OE Wi __ ~ i ) E  j __ D~ij On - L i D i OE 'r J ~j_ ~ _ ~ II 
n Oxj E Ox~ E Oxj E Oxj E Oxj E Ot E Or 

where 

oo 

4a e v3 aloo q- e~hjO)h + "-7;--,-dr. 

.0 
c~ 

oimj  ( 
0)2 @ ~2 

0 

D~j : D #  + J i  ( ]ooa j ) ,  D ? '  -:- r .  (~ b • 
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3 ~ . mE+ ~---~2 vE~ + e i ~ E ~ m ~  + E ~  dr, 
o 

and ~ij and ~ijk are Kronecker and Levi--Civita symbols. The tensor D~j describes electron 

diffusion in the nonequilibrium plasma (the expression for D~j was first obtained in [7]) and 

D ~  'll and DA, il ~j are the electron "thermodiffusion," since the quantity E determines the average 

D ~m'II describes the nonclassical electron fluxes connected with electron energy. The tensor ~{ 

the nonsteadiness of the electric field. According to [i0], if v does not depend on the 
electron velocity, 

D ~  = D~j, Di~' il = E - -  ODij D~;" II = ~iWx' II = O. 
. OE• 

3. Electron Transport Coefficients in the Model Case 

To determine the electron transport coefficients in the general case one must numerically 
solve a system of integrodifferential equations [i0]) but for certain models one can obtain 
an analytical solution of this problem. 

Suppose the integral of collisions of electrons with atoms and molecules has the diver- 
gent form 

I 0 

and the frequencies of elastic and inelastic collisions of electrons with neutral particles 
are power functions of the electron velocity: v = vovP, Vu = By, 6 = 6ovq. As indicated in 
the introduction, this model reflects a number of concrete situations. 

We shall assume that the magnetic field is perpendicular to the electric field and is 
directed along the z axis, i.e., Etl = 0 and EL = E. Then the solution of Eq. (2.2) has the 
form 

3m28 ~ ( r176 
/oo = C exp. - -  2eEE------- ~ q - ~  vg+~ + 

v~ v~+q+2)] (3.1) 
2 p + q + 2  

If the magnitude of the magnetic field is small and m << v, then the expression (3.1) is re- 
duced to the well-known equation [9] without allowance for the magnetic field. In the other 
limiting case of w >> ~ Eq. (3.1) is simplified,* 

]oo : C exp [ - -  (v/a)q~; 
2s l eE ~ 2 

a ~ = 3 a o k m O ) ~  s = q + 2 ,  C =  
s (3.2) 

It is just this case which will be considered below. Then the electron mobility and diffusion 
tensors a r e  

e0) k ~t~ = p + 3 \___..~S l ev (a_._ ) 6i j + 'm--~ 2 eljk' 

5 

l _3 . . . .  ]av~__a~ 1 

*The effective phase of the notation (3.2) is correct for the calculation of integral quanti- 
ties of the type ~, D, etc. The distribution function itself may differ greatly from (3.2) 
owing to the second term in the exponent of (3~ 
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0 

where ~(a) = '~o~ * ~nd i ,  j = x, y~ We shall not write out the components of tensors with an 

index z, since the expressions for them do not depend on the magnetic field. With allowance 
for the renormaJoization~ the expression for the diffusion tensor has the form 

* ~ ~2v !~) 
Dij : Dij + ~o - ' -~  e~ej, ei : E d E ,  

+S. 

For p > --3 the quantity $ can be written in the series form 

{p+3)  [ 5 

2 i , " �9 

The electron "thezmodiffusion" tensors are written in the form 

~% (~) 
D~: : er S, 

• OOi5 d ~ v  (~) %~ C2ejl, 

where 

C~ -- p ~ 3  
- 3s (s + 2 )  r(+) 

F(+! 

The expression for the tensor D ~i describing the electron fluxes connected with the non- 

steadiness of the electric field is reduced to 

D['-" n "~=~ 

We note that as ~ + 0 the equations obtained above coincide with the results of [9] with the 
substitution p *--p. The quantity s is also different in this case. Here s = q + 2 while in 
[9] s = 2p + q + 2. 

The results of a calculation of the dimensionless coefficients Co, S, CI, and C2 as a 

function of p for s = 2 and 4 are presented in Table I. It is seen that, as in the case 
without a magnetic field, the signs of these coefficients are determined by the sign of the 
derivative of the transport frequency of collisions of electrons with neutral particles with 
respect to the electron velocity. In the transition from one limiting case of ~ >> ~ to the 
other~ however~ the signs of S, Co, CI, C2, and some of the electron transport coefficients 
change. This is connected with the fact that the dependence of the mobility of the electrons 
on their transport frequency changes in this case. 
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TABLE i 

--0,26 
0 
0,t0 
0,23 

0,6 0,40 
0,8 �9 0.62 
i t,08 
t,5 2,t0 
2 4,62 

--1 
0 
0,2 
0,4 

8 

--0,073 

0,048 
0,t2 
0,2t 
0,35 
0,7t 
t,52 
3,37 

I 
" 0,70 I "00,75 ' 

:--70,t6 0,28 
--0,32 : 0,63 
--0,50 i,06 
:-0,69 t,60 
--0,9i 2:26 
--i,57 4,67 
--'2,54 8,75 

co 

'--0,t4 

0,032 
0,067 
0,tt 
0,i5 
0,20 

�9 0,34 
0,57 

8 

-~0,054 

0,016 
0.036 
0,058 
0,083 
0,12 
0,22 
0,40 

s~-4 

C~ 

0,t0 
0 

--0,025 
--0, 05t 
--0,080 
" 0 , t t  
--0,i5 
--0,25 
--0,40 

G 

" 0 , t l  
0 
0,029 
0.060 
0,095 

, 0 , 1 3  
0 , 1 7  
0.29 
0,45 

The experimental determination of the above-indicated electron transport coefficients 
will open up new possibilities for determining the cross sections for electron scattering on 
atoms and molecules and finding the regions of instability of a nonequilibrium weakly ionized 
plasma. The use of correct transport equations allows one to make sufficiently reliable cal- 
culations of the characteristics of a nonequilibrium weakly ionized plasma in electric and 
magnetic fields. 
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